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For the TZ metric on the moduli space M0,n of n-pointed 
rational curves, we construct a Kähler potential in terms of 
the Fourier coefficients of the Klein’s Hauptmodul. We define 
the space Sg,n as holomorphic fibration Sg,n → Sg over the 
Schottky space Sg of compact Riemann surfaces of genus g, 
where the fibers are configuration spaces of n points. For the 
tautological line bundles Li over Sg,n, we define Hermitian 
metrics hi in terms of Fourier coefficients of a covering map 
J of the Schottky domain. We define the regularized classical 
Liouville action S and show that exp{S/π} is a Hermitian 
metric in the line bundle L = ⊗n

i=1Li over Sg,n. We explicitly 
compute the Chern forms of these Hermitian line bundles

c1(Li, hi) =
4
3
ωTZ,i, c1(L , exp{S/π}) =

1
π2 ωWP.

We prove that a smooth real-valued function −S = −S +
π
∑n

i=1 log hi on Sg,n, a potential for this special difference of 
WP and TZ metrics, coincides with the renormalized hyper-
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bolic volume of a corresponding Schottky 3-manifold. We ex-
tend these results to the quasi-Fuchsian groups of type (g, n).

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Weil introduced the Weil–Petersson (WP) metric on the moduli spaces of Riemann 
surfaces by using the Petersson inner product on the holomorphic cotangent spaces, the 
complex vector spaces of cusp forms of weight 4. Ahlfors proved that the WP metric 
is Kähler and its Ricci, holomorphic sectional and scalar curvatures are all negative [1,
2], and Wolpert found a closed formula for the Riemann tensor of the WP metric and 
obtained explicit bounds for its curvatures [17].

In [19,20] it was shown that for the moduli space M0,n of marked Riemann surfaces 
of type (0, n), n > 3 (n-pointed rational curves) and for the Schottky space Sg of 
compact Riemann surfaces of genus g > 1 the WP metric has global Kähler potential, 
the so-called classical Liouville action (for precise definitions, see Sects. 2 and 3). In 
[12,13] a new Kähler metric was introduced on the moduli space Mg,n of Riemann 
surfaces of genus g with n > 0 punctures, 3g− 3 + n > 0. In [8,10,11,16,18] it was called 
Takhtajan–Zograf (TZ) metric (for its precise definition, see Sect. 2.1.2). Unlike the WP 
metric, the curvature properties of the TZ metric are not known.

Here we present explicit formula for a Kähler potential hi of the i-th TZ metric on 
the moduli space M0,n, i = 1, . . . , n. Specifically, in Proposition 1 we prove that hi is 
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expressed in terms of the first Fourier coefficients of Fourier expansions of the Klein’s 
Hauptmodul J at the cusps, introduced in (2.5)–(2.6). The functions hi on M0,n provide 
explicit expressions for trivializations of the Hermitian metrics in the (holomorphically 
trivial) tautological line bundles Li on M0,n, introduced in [16,18]. Proposition 1 is 
the statement that the first Chern form of the Hermitian line bundle Li is 43ωTZ,i, the 

symplectic form of the i-th TZ metric on M0,n, i = 1, . . . , n.
The function H = h1 . . . hn−1/hn on M0,n determines a Hermitian metric in the line 

bundle λ0,n over the moduli space M0,n of type (0, n) Riemann surfaces, introduced by 
Zograf [21] (see Lemma 1 and Sect. 2.2 for details). We show (see Corollary 2) that 
on M0,n

c1(λ0,n, H) = 4
3ωTZ,

where ωTZ = ωTZ,i + · · · + ωTZ,n is the symplectic form of the TZ metric on M0,n. 
Comparison with the known result (see [19,21])

c1(λ0,n, exp{S/π}) = 1
π2ωWP,

where S is the classical Liouville action and ωWP is the symplectic form of the WP 
metric, shows that a real-valued function S = S − πH on M0,n is a global Kähler 

potential for a special linear combination ωWP − 4π2

3 ωTZ of the WP and TZ metrics.
We also study WP and TZ metrics on the deformation spaces of punctured Riemann 

surfaces of genus g > 1. Namely, we introduce the Schottky space Sg,n of type (g, n)
Riemann surfaces as a holomorphic fibration Sg,n → Sg whose fibers are configuration 
spaces of n points (for details, see Sect. 2.3). Denote by J the corresponding covering 
map of the Schottky domain Ω and put hi = |ai(1)|2, where ai(1) are the first Fourier 
coefficients of J at the punctures zi, i = 1, . . . , n, given by (2.23). In Lemma 2 we prove 
that hi determine Hermitian metrics on the tautological line bundles Li — holomorphic 
line bundles dual to the vertical tangent bundle on Sg,n along the fibers of the projection 
pi : Sg,n → Sg,n−1 which ‘forgets’ the marked point wi, i = 1, . . . , n.

In Sect. 3.2 we define regularized classical Liouville action S and prove that exp{S/π}
determines a Hermitian metric in the holomorphic line bundle L = L1 ⊗ · · · ⊗ Ln

over Sg,n (see Lemma 3). Sect. 4 contains the main results of the paper. Thus in Sect. 4.1
we present explicit potentials for the TZ metrics on M0,n, and in Theorems 1 and 2 we 
explicitly compute canonical connections and Chern forms of the Hermitian line bundles 
(Li, hi) and (L , exp{S/π}). Namely, we show that

c1(Li, hi) = 4
3ωTZ,i, i = 1, . . . , n, (1.1)

c1(L , exp{S/π}) = 1
π2ωWP. (1.2)
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Here ωWP and ωTZ are, respectively, symplectic forms of the WP and TZ metrics
on Sg,n.

The statement that the first Chern class of the line bundles Li is 4
3ωTZ,i was proved 

in [13] at the level of cohomology classes and in [16,18] at the level of Chern forms. 
Hermitian metrics hi in the line bundles Li on Sg,n provide explicit expressions for the 
pullbacks of the Hermitian metrics in tautological line bundles over the moduli space 
Mg,n of n-pointed curves of genus g > 1, introduced in [16,18].

The quantity

S = S − π

n∑
i=1

log hi

is a smooth real-valued function on the Schottky space Sg,n. It follows from (1.1) and 
(1.2) that −S is a Kähler potential for a special linear combination of the WP and TZ 
metrics,

∂̄∂S = −2
√
−1
(
ωWP − 4π2

3 ωTZ

)
, (1.3)

where ∂ and ∂̄ are (1, 0) and (0, 1) components of the de Rham differential on Sg,n. This 
linear combination, with the overall factor 1/12π, is precisely the one that appears in 
the local index theorem for families on punctured Riemann surfaces for k = 0, 1 in [13, 
Theorem 1].

In Sect. 5 we extend the approach in [14] to quasi-Fuchsian groups of type (g, n). 
Namely, we define the classical Liouville action and in Theorem 4 prove that it is a Kähler 
potential of the WP metric on the quasi-Fuchsian deformation space. In Sect. 6 we study 
renormalized volumes of the corresponding Schottky and quasi-Fuchsian 3-manifolds. 
In Theorem 5 we prove that the renormalized hyperbolic volume of the corresponding 
Schottky 3-manifold is related to the above-mentioned function S and in Theorem 6 we 
prove that for quasi-Fuchsian 3-manifolds it is related to the regularized Liouville action. 
These extend the results obtained in [14] to punctured Riemann surfaces.
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NSF grant DMS-1005769 and thanks P. Zograf for useful discussions.

2. Basic facts

Here we recall the necessary basic facts from the complex-analytic theory of Teich-
müller spaces (see the classic book [3] and [1,2], and the modern exposition in [5,9]) and 
the results from [19,20].
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2.1. Teichmüller space T (Γ) of a Fuchsian group

Let Γ ⊂ PSL(2, R) be a Fuchsian group of type (g, n) acting on the Lobachevsky 
plane H = {z = x +

√
−1 y ∈ C | Im z > 0}. The group Γ is generated by 2g hyperbolic 

transformations A1, B1, . . . , Ag, Bg and n parabolic transformations S1, . . . , Sn, where 
3g − 3 + n > 0, satisfying the single relation

A1B1A
−1
1 B−1

1 · · ·AgBgA
−1
g B−1

g S1 · · ·Sn = 1.

The group Γ with a given, up to a conjugation in PSL(2, R), set of generators A1, B1, . . . ,
Ag, Bg, S1, . . . , Sn is called a marked Fuchsian group.

Let A−1,1(H, Γ) be the space of Beltrami differentials for Γ — a complex Banach 
space of μ ∈ L∞(H) satisfying

μ(γz)γ
′(z)

γ′(z) = μ(z) ∀γ ∈ Γ.

For every μ ∈ A−1,1(H, Γ) with

‖μ‖∞ = sup
z∈H

|μ(z)| < 1

there exists unique quasi-conformal (q.c.) homeomorphism fμ : H → H satisfying the 
Beltrami equation

fμ
z̄ = μfμ

z , z ∈ H,

and fixing the points 0, 1, ∞. Then Γμ = fμ ◦ Γ ◦ (fμ)−1 is a Fuchsian group of type 
(g, n) and the Teichmüller space T (Γ) is defined by

T (Γ) = {μ ∈ A−1,1(H,Γ) | ‖μ‖∞ < 1}/ ∼ .

Here μ ∼ ν if and only if fμ ◦ γ ◦ (fμ)−1 = fν ◦ γ ◦ (fν)−1 for all γ ∈ Γ (or equivalently, 
fμ = fν on R). The group Γ corresponds to μ = 0 and is the origin (the base point) 
of T (Γ).

2.1.1. The complex structure
The Teichmüller space T (Γ) admits a natural structure of a complex manifold, which 

is uniquely determined by the condition that canonical projection which sends μ ∈
A−1,1(H, Γ) with ‖μ‖∞ < 1 to its equivalence class [μ] ∈ T (Γ) is a holomorphic map. 
For the Fuchsian group Γ of type (g, n) the complex dimension of T (Γ) is d = 3g−3 +n.

Explicitly this complex structure is described as follows. Denote by H −1,1(H, Γ) the 
finite-dimensional subspace of harmonic Beltrami differentials for Γ with respect to the 
hyperbolic metric on H. It consists of μ ∈ A−1,1(H, Γ) satisfying ∂z(ρμ) = 0, where 
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ρ(z) = y−2 and has complex dimension d = 3g − 3 + n. The complex vector space 
H −1,1(H, Γ) is identified with the holomorphic tangent space T0T (Γ) to T (Γ) at the 
origin μ = 0. Every μ ∈ H −1,1(Γ) has the form μ(z) = y2q(z), where q ∈ H 2,0(H, Γ) is 
a cusp form of weight 4 for Γ — a holomorphic function on H that vanishes at the cusps 
of Γ and satisfies

q(γz)γ′(z)2 = q(z) ∀γ ∈ Γ.

Correspondingly, the holomorphic cotangent space T ∗
0 T (Γ) to T (Γ) at the origin is nat-

urally identified with the complex vector space H 2,0(H, Γ), and the pairing between 
T ∗

0 T (Γ) and T0T (Γ) is given by

(q, μ) =
∫∫
Γ\H

q(z)μ(z)d2z, where d2z = dxdy.

Choose a basis μ1, . . . , μd for H −1,1(H, Γ), put μ = ε1μ1+· · ·+εdμd and for ‖μ‖∞ < 1
let fμ be the normalized solution of the Beltrami equation. Then the correspondence 
(ε1, . . . , εd) �→ Γμ = fμ ◦ Γ ◦ (fμ)−1 defines the complex coordinates in a neighborhood 
of the origin in T (Γ), called Bers coordinates.

There is a natural isomorphism between the Teichmüller spaces T (Γ) and T (Γμ), 
which maps Γν ∈ T (Γ) to (Γμ)λ ∈ T (Γμ), where, in accordance with fν = fλ ◦ fμ,

λ =
(

ν − μ

1 − νμ̄

fμ
z

f̄μ
z̄

)
◦ (fμ)−1.

This isomorphism allows to identify the holomorphic tangent space T[μ]T (Γ) at [μ] ∈
T (Γ) with the complex vector space H −1,1(H, Γμ), and the holomorphic cotangent space 
T ∗

[μ]T (Γ) — with the complex vector space H 2,0(H, Γμ). It also allows to introduce the 
Bers coordinates in the neighborhood of Γμ in T (Γ), and to prove that these coordinates 
transform complex-analytically.

Remark 1. A marked Riemann surface of type (g, n) is a Riemann surface with a set 
of standard generators of its fundamental group, defined up to an inner automorphism. 
Whence the Teichmüller space T (Γ) can be interpreted as a Teichmüller space of marked 
Riemann surfaces of type (g, n) by assigning to each [μ] ∈ T (Γ) a marked surface Xμ ∼=
Γμ\H, with the surface X ∼= Γ\H playing the role of a base point. According to the 
isomorphism T (Γ) 
 T (Γμ), the choice of a base point is inessential and we will often 
use the notation Tg,n for T (Γ).

Variation formulas of the hyperbolic metric ρ(z)|dz|2 on H play an important role in 
the complex-analytic theory of Teichmüller spaces. Put

(fμ)∗(ρ) = |fμ
z |2

μ 2 .
(Im f )
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The first formula is the classic result of Ahlfors [1] (the so-called Ahlfors lemma) that 
for μ ∈ H −1,1(H, Γ)

∂

∂ε

∣∣∣∣
ε=0

(fεμ)∗(ρ) = 0. (2.1)

The formula for the second variation

∂2

∂ε1∂ε̄2

∣∣∣∣
ε=0

(fε1μ+ε2ν)∗(ρ) = 1
2ρfμν̄ , (2.2)

where μ, ν ∈ H −1,1(H, Γ) and Γ-automorphic function fμν̄ is uniquely determined by

−y2 ∂
2fμν̄
∂z∂z̄

+ 1
2fμν̄ = μν̄ and

∫∫
Γ\H

|fμν̄(z)|2ρ(z)d2z < ∞, (2.3)

was proved by S. Wolpert [17, Theorem 3.3].

Remark 2. It is shown in [15, Proposition 6.3], that formulas (2.2)–(2.3) can be obtained 
from Ahlfors’ earlier result in [2].

2.1.2. Kähler metrics on T (Γ)
The cotangent spaces T ∗

[μ]T (Γ) = H 2,0(H, Γμ) carry a natural inner product — the 
Petersson’s inner product on the space of cusp forms of weight 4. It determines the 
Weil–Petersson metric on the Teichmüller space T (Γ) by the formula

〈μ1, μ2〉WP =
∫∫

Γμ\H

μ1(z)μ2(z)ρ(z)d2z, μ1, μ2 ∈ T[μ]T (Γ) = H −1,1(H,Γμ).

The Weil–Petersson metric is real-analytic and Kähler and is invariant with respect to 
the Teichmüller modular group Mod(Γ).

In case when Γ is a Fuchsian group of type (g, n) and n > 0, a new Kähler metric 
on T (Γ) was introduced in [12,13]. Namely, let by z1, . . . , zn ∈ R ∪ {∞} be the set of 
non-equivalent cusps for Γ — the fixed points of the parabolic generators S1, . . . , Sn. 
For each i = 1, . . . , n denote by Γi the cyclic subgroup 〈Si〉 and let σi ∈ PSL(2, R) be 
such that σi∞ = zi and σ−1

i Siσi =
( 1 ±1

0 1

)
. Let Ei(z, s) be the Eisenstein–Maass series 

associated with the cusp zi, which for Re s > 1 is defined by the following absolutely 
convergent series

Ei(z, s) =
∑

Im(σ−1
i γz)s.
γ∈Γi\Γ
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The inner product

〈μ1, μ2〉i =
∫∫
Γ\H

μ1(z)μ2(z)Ei(z, 2)ρ(z)d2z, i = 1, . . . , n,

in H −1,1(H, Γ), and the corresponding inner products in all H −1,1(H, Γμ) determine 
another Hermitian metric on T (Γ). It was proved in [12,13] that this metric is Kähler for 
each i = 1, . . . , n. In [10,16,18] it was called TZ metric and we will denote it by 〈 , 〉TZ,i. 
The metric 〈 , 〉TZ = 〈 , 〉TZ,1+ · · ·+〈 , 〉TZ,n is invariant with respect to the Teichmüller 
modular group Mod(Γ). Denote by ωTZ,i the symplectic form of i-th TZ metric,

ωTZ,i =
√
−1
2

d∑
j,k=1

〈μj , μk〉TZ,idεj ∧ dε̄k,

and put ωTZ = ωTZ,1 + · · · + ωTZ,n.
The TZ metric is intrinsically related to the second variation of the hyperbolic metric 

on H (see Sect. 2.1.1). Namely, the following result was proved in [13]

lim
y→∞

Im(σiz)fμν̄(σiz) = 4
3 〈μ, ν〉TZ,i, i = 1, . . . , n, (2.4)

where μ, ν ∈ H −1,1(H, Γ) and fμν̄ is defined in (2.3).

2.2. The moduli space M0,n

Here we consider the moduli space1 M0,n of Riemann surfaces of type (0, n) with 
labeled punctures (n-pointed rational curves). Each such surface is uniquely realized as 
C̄ = C ∪{∞} with n labeled punctures such that the last three of them are, respectively, 
0, 1 and ∞. Let Fn(C) be the configuration space of n ordered distinct points in C with 
the PSL(2, C)-action. The moduli space is defined by M0,n = Fn(C)/ PSL(2, C) and is 
realized as the following domain in Cn−3,

M0,n = {(w1, . . . , wn−3) ∈ C
n−3 |wi �= 0, 1 and wi �= wk for i �= k}.

Let X = C \ {w1, . . . , wn−3, 0, 1} be a Riemann surface of type (0, n). By the uni-
formization theorem, X ∼= Γ\H, where type (0, n) Fuchsian group Γ is normalized such 
that the fixed points of Sn−2, Sn−1, Sn are, respectively, zn−2 = 0, zn−1 = 1, zn = ∞. 
Denote by H∗ the union of H and all cusps for Γ. There is unique covering map J : H → X

with the group of deck transformations Γ, which extends to a holomorphic isomorphism 
J : Γ\H∗ ∼→ C̄ that fixes 0, 1, ∞ and has the property that wi = J(zi), i = 1, . . . , n − 3. 

1 In [19,21] this moduli space was denoted by Wn.
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In the classical terminology J is called Klein’s Hauptmodul. It is a unique Γ-automorphic 
function on H that fixes 0 and 1 and has a simple pole at ∞. The function J is univalent 
in any fundamental domain for Γ and has the following Fourier expansions at the cusps,

J(σiz) = wi +
∞∑
k=1

ai(k)qk, i = 1, . . . , n− 1, (2.5)

J(σnz) =
∞∑

k=−1

an(k)qk, i = n, (2.6)

where q = e2π
√
−1z. The first Fourier coefficients of J determine the following smooth 

positive functions on M0,n: hi = |ai(1)|2, i = 1, . . . , n − 1, and hn = |an(−1)|2.
The symmetric group Symm(n) acts on M0,n (see [21, §1]) and let M0,n =

M0,n/Symm(n) be the moduli of Riemann surfaces of type (0, n). As in [21], let 
{fσ}σ∈Symm(n) be a 1-cocycle for Symm(n) on M0,n defined by

fσkn
(w1, . . . , wn−3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−3∏
i=1
i	=k

(wi − wk)2

wk(wk − 1) , k = 1, . . . , n− 3,

n−3∏
i=1

w2
i , k = n− 2,

n−3∏
i=1

(wi − 1)2, k = n− 1

where σkn is the transposition interchanging the points with indices k and n, and ex-
tended to the full group by fσ1σ2 = (fσ1 ◦ σ2)fσ2 . Let λ0,n be the holomorphic line 
bundle over M0,n determined by the 1-cocycle f , the quotient of the trivial line bundle 
M0,n × C → M0,n by the symmetric group action

(w, z) �→ (σ ·w, fσ(w)z), w ∈ M0,n, z ∈ C, σ ∈ Symm(n).

Lemma 1. A positive function H = h1 · · ·hn−1/hn on M0,n determine a Hermitian 
metric in the line bundle λ0,n over M0,n.

Proof. It readily follows from the description of the symmetric group action on M0,n in 
[21, §1] that H(σ ·w)|fσ(w)|2 = H(w) for all w ∈ M0,n and σ ∈ Symm(n). �

The hyperbolic metric eϕ(w)|dw|2 on X is a push-forward by the map J of the hyper-
bolic metric ρ(z)|dz|2 on H,

eϕ(w) =
∣∣(J−1)′(w)

∣∣2
−1 2 , (2.7)
(ImJ (w))
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and satisfies the Liouville equation

ϕww̄ = 1
2e

ϕ, w ∈ X. (2.8)

From the Fourier expansions (2.5)–(2.6) one gets the following asymptotic behavior of 
ϕ(w) as w → wi (see [19, Lemma 2])

ϕ(w) = −2 log |w − wi| − 2 log
∣∣∣∣log

∣∣∣∣w − wi

ai(1)

∣∣∣∣
∣∣∣∣+ O(|w − wi|), i �= n, (2.9)

ϕ(w) = −2 log |w| − 2 log log
∣∣∣∣ w

an(−1)

∣∣∣∣+ O(|w|−1), i = n. (2.10)

Denote by S(f) the Schwarzian derivative,

S(f) = f ′′′

f ′ − 3
2

(
f ′′

f ′

)2

.

We have

S(J−1)(w) = ϕww(w) − 1
2ϕw(w)2 =

n−1∑
i=1

(
1

2(w − wi)2
+ ci

w − wi

)
, (2.11)

and

S(J−1)(w) = 1
2w2 + O(|w|−3) as w → ∞

where ci = −ai(2)/(ai(1))2, i = 1, . . . , n −1, (see [19, Lemma 1]) are accessory parameters
of the Fuchsian uniformization of the surface X.

Consider the Riemann surface X = C \ {w1, . . . , wn−3, 0, 1} ∼= Γ\H as a base point in 
T0,n. For each [μ] ∈ T0,n the Fuchsian group Γμ = fμ ◦ Γ ◦ (fμ)−1 is normalized and we 
realize the Riemann surface Xμ ∼= Γμ\H as Xμ = C̄ \ {wμ

1 , . . . , w
μ
n−3, 0, 1, ∞}. Denote 

by Jμ the corresponding normalized covering map Jμ : H → Xμ and consider the map 
p : T0,n → M0,n, defined by

T0,n � [μ] �→ p([μ]) = (wμ
1 , . . . , w

μ
n−3) ∈ M0,n, where wμ

i = (Jμ ◦ fμ)(zi).

According to [19, Lemma 3], the map p is a complex-analytic covering. Consider the 
commutative diagram

H
fμ

−−−−→ H⏐⏐�J

⏐⏐�Jμ

X
Fμ

−−−−→ Xμ

(2.12)
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It follows from (2.12) that

Fμ
w̄ = MFμ

w , where M = (μ ◦ J−1) (J−1)′
(J−1)′ . (2.13)

The function fεμ(z) is real-analytic in ε for all z ∈ C. Put ḟμ(z) = ∂fεμ/∂ε|ε=0. It 
satisfies ḟμ

z̄ = μ and is given by

ḟμ(z) = − 1
π

∫∫
H

μ(ζ)R(ζ, z)d2ζ, where R(ζ, z) = z(z − 1)
(ζ − z)ζ(ζ − 1) .

Correspondingly, the function F εμ is holomorphic in ε and

Ḟμ(w) = − 1
π

∫∫
C

M(v)R(v, w)d2v, (2.14)

where Ḟμ = (∂F εμ/∂ε)|ε=0.
Denote by ri, i = 1, . . . , n − 3, the basis in H 2,0(H, Γ) = T ∗

0 T0,n defined as

ri(z) = Ri(J(z))J ′(z)2, where Ri(w) = − 1
π
R(w,wi),

and let qi(z), i = 1, . . . , n − 3, be the basis in H 2,0(H, Γ), dual to ri(z) with respect 
to the Petersson inner product. Finally, let μi(z) = y2qi(z) be the corresponding basis 
in H −1,1(H, Γ) = T0T0,n (see [19, Sects. 2.4–2.6]). The bases rμi (z) in H 2,0(H, Γμ) and 
μμ
i (z) in H −1,1(H, Γμ) for [μ] ∈ T0,n are defined similarly. Then for the covering map 

p : T0,n → M0,n we have (see [19, Lemma 3])

dp[μ] (μμ
i ) = ∂

∂wi
and p∗[μ](dwi) = rμi , i = 1, . . . , n− 3. (2.15)

We also have

S(J−1)(w) =
n∑

i=1
Ei(w) − π

n−3∑
i=1

ciRi(w), (2.16)

where

Ei(w) = 1
2(w − wi)2

− 1
2w(w − 1) , i �= n, En(w) = 1

2w(w − 1) . (2.17)

The corresponding functions ei(z) = Ei(J(z))J ′(z)2 on H are automorphic forms of 
weight 4 for Γ with non-zero constant term at the cusp zi, i = 1, . . . , n.
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Put Ḟ i = Ḟμi , i = 1, . . . , n − 3. The functions Ḟ i(w) are given by (2.14) where

Mi(v) = e−ϕ(v)Qi(v), Qi(v) = qi(J−1(v))(J−1)′(v)2. (2.18)

It follows from (2.15) that

Ḟ i(wj) = δij , i, j = 1, . . . , n− 3

and

Ḟ i(0) = Ḟ i(1) = 0, Ḟ i(w) = o(|w|2) as w → ∞.

Also we have

Ḟ i(w) = δij + (w − wj)Ḟ i
w(w) + o

(∣∣∣∣ w − wj

log |w − wj |

∣∣∣∣
)

(2.19)

as w → wj , j �= n, and

Ḟ i(w) = wḞ i
w(w) + o

(
|w|

log |w|

)
as w → ∞. (2.20)

Remark 3. One can easily prove (2.19)–(2.20) (with better error terms) using integral 
representation (2.14) and asymptotic behavior (2.9)–(2.10). Here is the sketch of the 
proof of (2.20). We have

Ḟ i(w) − wḞ i
w(w) = − 1

π

∫∫
C

Mi(v)
{

v − 2w
(v − w)2 − 1

v

}
d2v,

where the integral is understood in the principal value sense as in [3]. Putting v = uw

we have

Ḟ i(w) − wḞ i
w(w) = − w̄

π

∫∫
C

Mi(uw)
{

u− 2
(u− 1)2 − 1

u

}
d2u.

It follows from (2.18) that

Mi(w) = O

(
log2 |w|
|w|

)
as w → ∞,

whence the integral over |u| ≥ 2 is estimated by O(log2 |w|). Now choose α3 =
log2 |w|/|w|. Estimating the integral over |u| ≤ α by the area, and the integral over 
α ≤ |u| ≤ 2 — by the estimate of Mi(α|w|), we obtain that both of these integrals are 
estimated by |w|α2 = |w|1/3 log4/3 |w|.
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Let eϕμ(w)|dw|2 be the hyperbolic metric on the Riemann surface Xμ. It follows from 
commutative diagram (2.12) that Fμ ◦ J = Jμ ◦ fμ, and we have

(Fμ)∗(eϕ
μ

) = (J−1)∗(fμ)∗(ρ).

Whence the first and second variations of the family of hyperbolic metrics eϕεμ(w)|dw|2
on the Riemann surfaces Xεμ = F εμ(X) are given by the same formulas (2.1)–(2.3), 
where ρ is replaced by eϕ and fμν̄ — by (J−1)∗(fμν̄) = fμν̄ ◦ J−1. Moreover, since for 
any α ∈ R we have

(Fμ)∗(eαϕ
μ

) =
(
(Fμ)∗(eϕ

μ

)
)α

,

we get from (2.1) and (2.2)

∂

∂ε

∣∣∣∣
ε=0

(F εμ)∗(eαϕ
εμ

) = 0 (2.21)

and

∂2

∂ε1∂ε̄2

∣∣∣∣
ε=0

(F ε1μ+ε2ν)∗(eαϕ
εμ

) = α

2 e
αϕfμν̄ ◦ J−1. (2.22)

Finally, each TZ metric 〈 , 〉TZ,i on T0,n is invariant with respect to the automorphism 
group of the covering p : T0,n → M0,n and determines a Kähler metric on M0,n, which 
we continue to denote by 〈 , 〉TZ,i, i = 1, . . . , n.

2.3. The Schottky space Sg,n

A Schottky group Σ is a free finitely generated strictly loxodromic Kleinian group. Its 
limit set Λ is a Cantor set and the region of discontinuity Ω = C̄ \ Λ is connected. Let 
Σ be a Schottky group of rank g > 1, considered as a discrete subgroup of PSL(2, C). 
The group Σ acts on Ω freely, and the quotient space Σ\Ω is compact Riemann surface 
of genus g. A Schottky group Σ of rank g with a relation-free system of generators 
L1, . . . , Lg is called marked. For each such system of free generators there is a fundamental 
domain D for Σ in Ω which is a region in C̄ bounded by 2g disjoint Jordan curves 
C1, . . . , Cg, C ′

1, . . . , C
′
g with C ′

i = −Li(Ci), i = 1, . . . , g. Here Ci and C ′
i are oriented as 

components of the boundary of D, and the minus sign means the reverse orientation. 
Each element Li can be represented in the normal form

Liw − ai
Liw − bi

= λi
w − ai
w − bi

, w ∈ C̄,

where ai and bi are the respective attracting and repelling fixed points of the transfor-
mation Li and 0 < |λi| < 1. In what follows we always assume that a marked Schottky 



J. Park et al. / Advances in Mathematics 305 (2017) 856–894 869
is normalized, that is a1 = 0, b1 = ∞ and a2 = 1. In particular, this implies that ∞ /∈ D. 
The mapping

(Σ;L1, . . . , Lg) �→ (a3, . . . , ag, b2, . . . , bg, λ1, . . . , λg) ∈ C
3g−3

establishes an one-to-one correspondence between the set of normalized marked Schottky 
groups and a region Sg in C3g−3, called the Schottky space.

Equivalently, the Schottky space is defined as follows. Let A−1,1(Ω, Σ) be the complex 
Banach space of L∞(Ω) of Beltrami differentials for Σ (cf. Sect. 2.1). Let D(Σ) be a 
deformation space of the Schottky group Σ,

D(Σ) = {μ ∈ A−1,1(Ω,Σ) | ‖μ‖∞ < 1}/ ∼,

where μ ∼ ν if and only if Fμ◦σ◦(Fμ)−1 = F ν ◦σ◦(F ν)−1 for all σ ∈ Σ (or equivalently, 
Fμ = F ν on Λ).2 The group Σ corresponds to μ = 0 and is the origin (the base point) of 
D(Σ). The deformation space D(Σ) is complex-analytically isomorphic to the Schottky 
space Sg with the choice of a base point.

The Schottky space Sg,n of type (g, n) Riemann surfaces is defined by a holomorphic 
fibration j : Sg,n → Sg whose fibers over the points [μ] ∈ Sg are configuration spaces 
Fn(Σμ\Ωμ), where Σμ = Fμ ◦ Σ ◦ (Fμ)−1 and Ωμ = Fμ(Ω). Equivalently it is defined 
as follows. Consider the deformation space of a Schottky group Σ together with a point 
(w1, . . . , wn) ∈ Fn(D),

D(Σ;w1, . . . , wn) = {(μ;wμ
1 , . . . , w

μ
n) ∈ A−1,1(Ω,Σ) × Fn(Dμ) | ‖μ‖∞ < 1}/ ∼ .

Here wμ
i = Fμ(wi), Dμ = Fμ(D) and μ ∼ ν if and only if Fμ◦σ◦(Fμ)−1 = F ν◦σ◦(F ν)−1

for all σ ∈ Σ and wμ
i = wν

i , i = 1, . . . , n. The deformation space D(Σ; w1, . . . , wn) is 
complex-analytically isomorphic to the Schottky space Sg,n with the choice of a base 
point.

Let X = Σ\Ω be compact Riemann surface of genus g with n marked points x1, . . . , xn, 
and let Γ be a Fuchsian group of type (g, n) such that X0 = X \{x1, . . . , xn} ∼= Γ\H. One 
can choose generators A1, B1, . . . , Ag, Bg and S1, . . . , Sn of Γ such that Σ is isomorphic 
to the quotient group Γ/N , where N is the smallest normal subgroup of Γ which contains 
A1, . . . , Ag and S1, . . . , Sn. As in Sect. 2.2, let H∗ be the union of H and all cusps for Γ. 
The complex-analytic covering πΓ : H → Γ\H ∼= X0 extends to the map π∗

Γ : H∗ → X

such that π∗
Γ(zi) = xi, where zi are fixed points of Si, i = 1, . . . , n.

The Schottky uniformization of a compact Riemann surface X with n marked points 
x1, . . . , xn is related to the Fuchsian uniformization of a punctured surface X0 = X \
{x1, . . . , xn} by the commutative diagram

2 Here and in what follows Fμ is a normalized solution of the Beltrami equation on C with Beltrami 
coefficient μ.



870 J. Park et al. / Advances in Mathematics 305 (2017) 856–894
H
∗ Ω

X

J

π∗
Γ

πΣ

where πΣ is unramified while J and π∗
Γ are branched covering maps. The map J is 

considered as a meromorphic function on H which is automorphic with respect to N and 
satisfies J ◦ Bi = Li ◦ J , j = 1, . . . , g. It has the following Fourier series expansions at 
the cusps of Γ,

J(σiz) = wi +
∞∑
k=1

ai(k)qk, i = 1, . . . , n, (2.23)

where wi = J(zi). (Cf. (2.5) and note that since Σ is normalized, ∞ /∈ Ω.)
Let Li be i-th the relative dualizing sheaf on Sg,n — a holomorphic line bundle dual 

to the vertical tangent bundle on Sg,n along the fibers of the projection pi : Sg,n →
Sg,n−1 which ‘forget’ the marked point wi, i = 1, . . . , n. The bundles Li, also called 
tautological line bundles, are characterized by the property that the fiber of Li over a 
point ([Σ]; w1, . . . , wn) ∈ Sg,n is the cotangent line T ∗

wi
(Σ\Ω).

Since J ◦ Bk = Lk ◦ J , the points w1, . . . , Lkwi, . . . , wn correspond to the cusps 
z1, . . . , Bkzi, . . . , zn, and the first Fourier coefficient of J(z) at the equivalent cusp Bkzi
is L′

k(wi)ai(1). Correspondingly, hi = |ai(1)|2 gets replaced by hi|L′
k(wi)|2, and using 

the above interpretation of the line bundles Li we arrive at the following statement.

Lemma 2. The quantities hi determine Hermitian metrics in the holomorphic line bun-
dles Li, i = 1, . . . , n.

Let eϕ(w)|dw|2 be the push-forward of the hyperbolic metric on H by the map J . It 
is given by the same formula (2.7), where ϕ(w) is smooth on Ω0 = Ω \Σ · {w1, . . . , wn}, 
a complement in Ω of the Σ-orbit of {w1, . . . , wn}. The function ϕ(w) satisfies

ϕ(σw) = ϕ(w) − log |σ′(w)|2, ∀σ ∈ Σ, w ∈ Ω0, (2.24)

and has the same asymptotics (2.9) as w → wi, i = 1, . . . , n.

Remark 4. From asymptotics (2.9) it follows that

log hi = lim
w→wi

(
log |w − wi|2 + 2e−ϕ(w)/2

|w − wi|

)
, i = 1, . . . , n.

To each marked Fuchsian group Γ of type (g, n) there is a unique marked normalized 
Schottky group Σ 
 Γ/N with the domain of discontinuity Ω such that Γ\H∗ ∼= Σ\Ω. 
This determines a map

π : Tg,n → Sg,n
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by putting wi = J(zi), i = 1, . . . , n. As in n = 0 case (see [20, Sect. 2.4]), the map π is 
a complex-analytic covering. It plays the same role as the corresponding covering map p
in Sect. 2.2.

Specifically, the push-forward by the map J of the vector space H 2,0(H, Γ) is a vector 
space H 2,0(Ω0, Σ) of holomorphic functions on Ω0, defined as

Q(w) = q(J−1(w))(J−1)′(w)2, q(z) ∈ H 2,0(H,Γ).

They are automorphic forms of weight 4 for group Σ which admit a meromorphic ex-
tension to Ω with at most simple poles at Σ · {w1, . . . , wn}. The space H 2,0(Ω0, Σ) is 
naturally identified with the holomorphic cotangent space T ∗

0Sg,n to Sg,n at the ori-
gin. Correspondingly, the holomorphic tangent space T0Sg,n is the complex vector space 
H −1,1(Ω0, Σ) of Beltrami differentials, harmonic with respect to the hyperbolic metric 
on Ω0. Namely, each M ∈ H −1,1(Ω0, Σ) has the form

M(w) = e−ϕ(w)Q(w), Q ∈ H 2,0(Ω0,Σ).

The tangent and cotangent spaces to Sg,n at each point (Σμ, wμ
1 , . . . , w

μ
n) are identified, 

respectively, with H −1,1(Ωμ
0 , Σμ) and H 2,0(Ωμ

0 , Σμ), where Ωμ
0 = Fμ(Ω0). We have the 

following analog of commutative diagram (2.12),

H
fμ

−−−−→ H⏐⏐�J

⏐⏐�Jμ

Ω0
Fμ

−−−−→ Ωμ
0

(2.25)

Here F εμ satisfies Beltrami equation (2.13), is complex-analytic in ε and Ḟμ is given 
by (2.14).

From the fibration j : Sg,n → Sg it follows that T ∗
0 Sg,n has a subspace j∗(T ∗

0 Sg) ∼=
H 2,0(Ω, Σ) with a natural basis P1(w), . . . , P3g−3(w) given by holomorphic automorphic 
forms of weight 4 for Σ which represent the cotangent vectors dλ1, . . . , dλg, da3, . . . , dag,
db2, . . . , dbg as in [21, formulas (2.2)]. The complementary subspace to j∗(T ∗

0 Sg) in 
T ∗

0 Sg,n is isomorphic to the subspace T ∗
0 Fn(X), the cotangent space to the configu-

ration space at the base point (w1, . . . , wn). Its natural basis, as it follows from (2.14), 
is given by the following meromorphic automorphic forms of weight 4,

P3g−3+i(w) = − 1
π

∑
σ∈Σ

R(σw,wi)σ′(w)2, w ∈ Ω, (2.26)

which represent dwi, i = 1, . . . , n.
Denote by M1(w), . . . , Md(w) the basis in H −1,1(Ω0, Σ), dual to the basis P1(w), . . . ,

Pd(w) in H 2,0(Ω0, Σ) with respect to the pairing
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(Q,M) =
∫∫
D

Q(w)M(w)d2w. (2.27)

Here M3g−3+1, . . . , M3g−3+n represent the tangent vectors ∂/∂w1, . . . , ∂/∂wn in T0Sg,n. 
The corresponding bases in tangent and cotangent spaces to Sg,n at arbitrary point 
(Σμ; wμ

1 , . . . , w
μ
n) are defined similarly.

As in Sect. 2.2, we have S(J−1)(w) = ϕww(w) − 1
2ϕw(w)2. It follows from the asymp-

totic behavior of ϕ(w) as w → wi, that

S(J−1)(w) =
n∑

i=1
Ei(w) − π

3g−3+n∑
l=1

clPl(w), (2.28)

where (cf. (2.16) and (2.17))

Ei(w) = 1
2
∑
σ∈Σ

(
1

(σw − wi)2
− 1

σw(σw − 1)

)
σ′(w)2, i = 1, . . . , n, (2.29)

are meromorphic automorphic forms of weight 4 for Σ with the second order poles at 
Σ · wi, and c1, . . . , cd are the analogs of accessory parameters.3

For the first and second variations of the family of hyperbolic metrics on the Schottky 
domains Ωμ we have the same formulas (2.21)–(2.22). Finally, each TZ metric 〈 , 〉TZ,i on 
Tg,n is invariant with respect to the automorphism group of the covering π : Tg,n → Sg,n

and determines a Kähler metric on Sg,n, which we continue to denote by 〈 , 〉TZ,i, 
i = 1, . . . , n.

3. Liouville action

3.1. Punctured spheres

Let X = C \ {w1, . . . , wn−3, 0, 1} be a marked Riemann surface of type (0, n). The 
regularized classical Liouville action is defined by the following formula (see [19]),

S(w1, . . . , wn−3)

= lim
δ→0+

⎛
⎝∫∫

Xδ

(|ϕw|2 + eϕ)d2w + 2πn log δ + 4π(n− 2) log | log δ|

⎞
⎠ , (3.1)

where Xδ = C \ ∪n−1
i=1 {|w − wi| < δ} ∪ {|w| > 1/δ}. It is a critical value of the Liouville 

action, the Euler–Lagrange functional for the Liouville equation (2.8) with the asymp-
totic behavior (2.9)–(2.10) on the Riemann surface X, and defines the smooth function 

3 Note that for i = 1, . . . , 3g − 3 parameters ci introduced here are −1/π times accessory parameters 
in [20].
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S : M0,n → R. Denote by ∂ and ∂̄ the (1, 0) and (0, 1) components of de Rham differential 
on M0,n. It is proved in [19, Theorem 1],

∂S = −2π
n−3∑
i=1

ciRi,

so that the regularized Liouville action is a generating function for the accessory param-
eters,

ci = − 1
2π

∂S

∂wi
, i = 1, . . . , n− 3.

Also, according to [19, Theorem 2], the function −S is a Kähler potential for the Weil–
Petersson metric on M0,n,

∂̄∂S = −2
√
−1ωWP.

Let M0,n = M0,n/Symm(n) be the moduli space of Riemann surfaces of type (0, n). 
It is proved in [21, §1] that exp{S/π} determines a Hermitian metric in a holomorphic 
line bundle λ0,n over M0,n (see Sect. 2.2), so that

c1(λ0,n, exp{S/π}) = 1
π2ωWP. (3.2)

3.2. Schottky domains

Let Σ be a marked normalized Schottky group of rank g > 1. The classical Liouville 
action is a critical value of the Liouville action functional and is defined by the following 
formula [20] (see [14] for the cohomological interpretation),

S(ϕ) =
√
−1
2

∫∫
D

ω(ϕ) +
√
−1
2

g∑
k=2

∫
Ck

θL−1
k

(ϕ), (3.3)

where

ω(ϕ) = (|ϕw|2 + eϕ)dw ∧ dw̄

and for σ ∈ PSL(2, C)

θσ−1(ϕ) =
(
ϕ− 1

2 log |σ′|2 − log |c(σ)|2
)(

σ′′

σ′ dw − σ′′

σ′ dw̄

)
.

Here for σ =
(
a b
)

we put c(γ) = c, so that θσ−1(ϕ) = 0 if c(σ) = 0.

c d
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The classical Liouville action is independent of the choice of a fundamental domain D
for the marked Schottky group Σ and determines a smooth function S : Sg → R. As in 
Sect. 3.1, denoting by ∂ and ∂̄ the (1, 0) and (0, 1) components of de Rham differential 
on Sg we have4 (see [20, Theorems 1,2])

∂S = −2π
3g−3∑
l=1

clPl and ∂̄∂S = −2
√
−1ωWP,

so that −S is a Kähler potential for the Weil–Petersson metric on Sg.
To define the classical Liouville action for the hyperbolic metric on Ω0 = Ω \ Σ ·

{w1, . . . , wn} one needs to regularize the area integral in (3.3), which diverges due to the 
asymptotic behavior (2.9) of ϕ as w → wi. We do it in the same way as in genus 0 case. 
Namely, suppose that all w1, . . . , wn ∈ IntD, the interior of D, and for sufficiently small 
δ > 0 define Dδ = D \ ∪n

i=1Di(δ), where Di(δ) = {|w − wi| < δ} ⊂ D, i = 1, . . . , n. It 
follows from (2.9) that the following limit exists

Sbulk(ϕ) = lim
δ→0+

⎛
⎝√

−1
2

∫∫
Dδ

ω(ϕ) + 2πn(log δ + 2 log |log δ|)

⎞
⎠ . (3.4)

Remark 5. Equivalently, one can define Sbulk(ϕ) by cutting out the interiors Di ⊂ D of 
arbitrary simple closed curves li around wi such that wj /∈ Di for i �= j. Namely, let

2√
−1

S̃l(ϕ) =
∫∫

D\∪n
i=1Di

ω(ϕ) +
n∑

i=1

∫
li

(
2 log |w − wi|

w̄ − w̄i
+ 2 log (log |w − wi|)2

w̄ − w̄i

)
dw̄.

Then it easily follows from Stokes’ theorem and (2.9) that

Sbulk(ϕ) = lim
r→0

S̃l(ϕ),

where r = max{diam(l1), . . . , diam(ln)}.

Now we define the regularized action5 as

S = S(D;w1, . . . , wn) = Sbulk(ϕ) +
√
−1
2

g∑
k=2

∫
Ck

θL−1
k

(ϕ). (3.5)

This completes the definition of S provided that fundamental domain D is such that 
w1, . . . , wn ∈ IntD. As in the compact case, S does not depend on the choice of D

4 See the previous footnote.
5 It should be always clear from the context for which space the action S stands for.
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with the property that w1, . . . , wn ∈ IntD. However, S(D; w1, . . . , wn) depends on the 
choice of representatives in Σ · {w1, . . . , wn} and no longer determines a function oh the 
Schottky space Sg,n. Its geometric meaning is the following (cf. Lemma 2).

Lemma 3. The regularized Liouville action determines a Hermitian metric exp{S/π} in 
the holomorphic line bundle L = L1 ⊗ · · · ⊗ Ln over Sg,n.

Proof. It is sufficient to prove that for i = 1, . . . , n,

S(D̃;w1, . . . , Lkwi, . . . , wn) − S(D;w1, . . . , wn) = π log |L′
k(wi)|2,

where w1, . . . , wn ∈ IntD and w1, . . . , wi−1, Lkwi, wi+1, . . . , wn ∈ Int D̃. Moreover, it is 
sufficient to consider the case when

D̃ = (D \D0) ∪ Lk(D0)

and D0 ⊂ D is such that ∂D0 ∩ ∂D ⊂ Ck and wi ∈ D0, while all other wj ∈ D \ D0, 
j �= i. Indeed, any choice of a fundamental domain for Σ is obtained from D by a finite 
combination of such transformations.

Put

Iδ(D;w1, . . . , wn) =
∫∫
Dδ

ω(ϕ) +
g∑

k=2

∫
Ck

θL−1
k

(ϕ). (3.6)

Since C̃j = Cj for j �= k and C̃k = Ck − ∂D0, we have

ΔIδ = Iδ(D̃;w1, . . . , Lkwi, . . . , wn) − Iδ(D;w1, . . . , wn)

=
∫∫

Lk(D0)\D̃i(δ)

ω(ϕ) −
∫∫

D0\Di(δ)

ω(ϕ) −
∫

∂D0

θL−1
k

(ϕ).

It follows from (2.24) that

L∗
k(ω(ϕ)) = ω(ϕ) ◦ Lk|L′

k|2 = ω(ϕ) + dθL−1
k

(ϕ),

and by Stokes theorem we get

ΔIδ =
∫∫

D0\L−1
k (D̃i(δ))

L∗
k(ω(ϕ)) −

∫∫
D0\Di(δ)

ω(ϕ) −
∫

∂D0

θL−1
k

(ϕ)

=
∫∫
−1 ˜

ω(ϕ) −
∫∫

D \D (δ)

ω(ϕ) −
∫

−1 ˜

θL−1
k

(ϕ)

D0\Lk (Di(δ)) 0 i ∂Lk (Di(δ))
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=
∫∫

D0\D(δ̃)

ω(ϕ) −
∫∫

D0\Di(δ)

ω(ϕ) + o(1) as δ → 0,

where δ̃ = δ/|L′
k(wi)|. Thus for |L′

k(wi)| < 1 we have

ΔIδ = −
∫∫
Ki

|ϕw|2dw ∧ dw̄ + o(1),

where Ki is the annulus δ ≤ |w − wi| ≤ δ̃. It now follows from (2.9) that

ΔIδ = −4π
√
−1 log |L′

k(wi)| + o(1).

In case |L′
k(wi)| > 1 we have

ΔIδ =
∫∫
K̃i

|ϕw|2dw ∧ dw̄ + o(1) = −4π
√
−1 log |L′

k(wi)| + o(1),

where K̃i is the annulus δ̃ ≤ |w − wi| ≤ δ. �
Combining with Lemma 2 we obtain

Corollary 1. Put H = h1 · · ·hn. Then

S = S − π logH (3.7)

determines a smooth real-valued function on Sg,n.

Remark 6. Let D(wi; δi) = {w ∈ C : |w − wi| < δi}, where δi = |ai(1)|δ. Since ai(1) �→
L′
k(wi)ai(1) under the transformation wi �→ Lk(wi), we have that up to O(δ2) terms 

D(Lkwi; δi) = Lk (D(wi; δi)). This shows that (3.7) can be also defined as

S = lim
δ→0+

⎛
⎜⎝
√
−1
2

∫∫
Dδ(h)

ω(ϕ) + 2πn(log δ + 2 log |log δ|)

⎞
⎟⎠ (3.8)

+
√
−1
2

g∑
k=2

∫
Ck

θL−1
k

(ϕ),

where Dδ(h) = D \ ∪n
i=1D(wi; δi).
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4. Potentials for the WP and TZ metrics

Here using first Fourier coefficients of Klein’s Hauptmodul we construct a global po-
tential for the TZ metric on M0,n. For the Schottky space Sg,n we prove that the first 
Chern forms of the line bundles Li with Hermitian metrics hi are 

4
3ωTZ,i. We also prove 

that 1
π2ωWP is the first Chern form of the line bundle L = L1 ⊗ · · · ⊗ Ln with the 

Hermitian metric exp{S/π}, where S is the regularized classical Liouville action (3.7). 

As a corollary, the following combination ωWP − 4π2

3 ωTZ of WP and TZ metrics has a 

global Kähler potential on Sg,n.

4.1. Potential for the TZ metric on M0,n

As in Sect. 2.2, let Γ be marked normalized Fuchsian group of type (0, n) uniformizing 
the Riemann surface X = C \ {w1, . . . , wn−3, 0, 1}, let J : H → X be the normalized 
covering map, and let hi = |ai(1)|2, i = 1, . . . , n − 1, and hn = |an(−1)|2 be smooth 
positive functions on M0,n. According to Remark 4 we have

log hi = lim
w→wi

(
log |w − wi|2 + 2e−ϕ(w)/2

|w − wi|

)
, i = 1, . . . , n− 1,

and

log hn = lim
w→∞

(
log |w|2 − 2e−ϕ(w)/2

|w|

)
,

where the last formula follows from (2.10).

Lemma 4. We have for all i = 1, . . . , n,

h−1
i

∂hi

∂wk
= Ḟ k

w(wi), k = 1, . . . , n− 3.

Proof. For given X = C \ {w1, . . . , wn−3, 0, 1} 
 Γ\H there is an isomorphism Tg,n 

T (Γ) (see Sect. 2.1.1). Consider first the case i = n. According to (2.15), it is sufficient 
to show that

(
∂ log hεμ

n

)∣∣∣∣ = Ḟ k
w(∞), where μ = μk.
∂ε ε=0
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Using that F εμ is holomorphic in ε at ε = 0 and formulas (2.10), (2.20), (2.21), we get

(
∂hεμ

n

∂ε

)∣∣∣∣
ε=0

= lim
w→∞

{(
∂

∂ε

)∣∣∣∣
ε=0

(
log |F εμ|2 − 2(F εμ)∗(e− 1

2ϕ
εμ

)
∣∣∣∣F εμ

w

F εμ

∣∣∣∣
)

(w)
}

= lim
w→∞

(
Ḟ k(w)

w
− e−ϕ(w)/2(wḞ k

w(w) − Ḟ k(w))|w|
w2w̄

)

= Ḟ k
w(∞).

Interchanging the order of the limit w → ∞ and differentiation is legitimate since con-
vergence in the above formula and in the definition of hn is uniform in a neighborhood 
of an arbitrary point (w1, . . . , wn−3) ∈ M0,n. The case i �= n is considered similarly. �

Let ∂ and ∂̄ be, respectively, (1, 0) and (0, 1) components of the de Rham differential 
d on M0,n. We have the following result.

Proposition 1. The functions − log hi : M0,n → R>0, i = 1, . . . , n − 1, and log hn are 
Kähler potential for the 4π/3 multiples of TZ metrics,

∂̄∂ log hi = −8π
√
−1

3 ωTZ,i, i �= n and ∂̄∂ log hn = 8π
√
−1

3 ωTZ,n.

Proof. First consider the case i = n. We need to prove that

∂2 log hn

∂wj∂w̄k
= 4π

3

〈
∂

∂wj
,

∂

∂wk

〉
TZ,n

, j, k = 1, . . . , n− 3.

By polarization, it is sufficient to consider the case j = k. According to Sect. 2.1.1, for 
given X = C \ {w1, . . . , wn−3, 0, 1} 
 Γ\H we can use the isomorphism Tg,n 
 T (Γ). 
Thus we need to show that

(
∂2 log hεμ

n

∂ε∂ε̄

)∣∣∣∣
ε=0

= 4π
3 ‖μ‖2

TZ,n, where μ = μk.

Using that F εμ is holomorphic in ε at ε = 0 and formulas (2.20), (2.21), (2.22), (2.10), 
we get

(
∂2 log hεμ

n

∂ε∂ε̄

)∣∣∣∣
ε=0

=
(

∂2 )∣∣∣∣
{

lim
w→∞

(
log |F εμ|2 − 2(F εμ)∗(e− 1

2ϕ
εμ

)
∣∣∣∣F εμ

w
εμ

∣∣∣∣
)

(w)
}

∂ε∂ε̄ ε=0 F



J. Park et al. / Advances in Mathematics 305 (2017) 856–894 879
= −2 lim
w→∞

⎧⎨
⎩ 1

|w|

(
∂2

∂ε∂ε̄

)∣∣∣∣
ε=0

(F εμ)∗(e− 1
2ϕ

εμ

)(w)

+ e−
1
2ϕ(w)

∣∣∣∣∣ ∂∂ε
∣∣∣∣
ε=0

(
F εμ
w (w)

F εμ(w)

) 1
2
∣∣∣∣∣
2
⎫⎬
⎭

= lim
w→∞

{
1
2 log |w|fμμ̄(J−1(w)) − 1

2e
− 1

2ϕ(w)
∣∣wḞw(w) − Ḟ (w)

∣∣2
|w|3

}

= π lim
w→∞

yfμμ̄(z) = 4π
3 ‖μ‖2

TZ,n.

The case i �= n is considered similarly. Here

lim
w→wi

log |w − wi|
Im(σ−1

i (J−1(w))
= −2π,

and we get the different sign from the case of i = n. �
Remark 7. One can also prove Proposition 1 by using Lemma 4 and another Wolpert’s 
formula

∂

∂ε̄

∣∣∣∣
ε=0

(fεμ)∗(μεμ
i )(z) = −

(
∂

∂z̄
y2 ∂

∂z̄

)
fμμ̄i

(z)

(see [17, Theorem 2.9]).

Remark 8. Let Li be the tautological line bundle on M0,n — a holomorphic line bun-
dle dual to the vertical tangent bundle of M0,n along the fibers of the projection 
pi : M0,n → M0,n−1 which ‘forget’ the marked point zi, i = 1, . . . , n. The line bun-
dles Li are holomorphically trivial over M0,n (but not over M0,n), and the functions hi

on M0,n are trivializations of the Hermitian metrics in Li, introduced in [16,18].

By Lemma 1 and Proposition 1, we have

Corollary 2. The function − logH = log hn − log h1 − · · · − log hn−1 is a potential for 
the 4π/3 multiple of the TZ metric on M0,n. The first Chern form of the Hermitian line 
bundle (λ0,n, H) over M0,n is given by

c1(λ0,n, H) = 4
3ωTZ.

For each marked Fuchsian group Γ denote by r(z) the projection of the regular auto-
morphic form −S(J)(z) of weight 4 to the subspace of cusp forms,
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r(z) =
n−3∑
i=1

αiri(z), where αi = −
∫∫
Γ\H

S(J)(z)μi(z)d2z.

According to Sect. 2.2, the family of cusp forms r(z) for varying Γ determines a (1, 0)-form 
r on T0,n. Denote by ϑ =

∑n−3
i=1 αidwi the corresponding (1, 0)-form on M0,n. It follows 

from (2.15), (2.16) that p∗(ϑ) = r, where p : T0,n → M0,n.
Put S = S − π logH. Combining Lemma 4 with the proof of Theorem 1 in [19] and 

using Proposition 1 and Theorem 2 in [19], we obtain the following result.

Corollary 3. The function S : M0,n → R satisfies

∂S = 2ϑ

and

∂̄∂S = −2
√
−1
(
ωWP − 4π2

3 ωTZ

)
. (4.1)

Remark 9. Since both H and exp{S/π} are Hermitian metrics in the line bundle λ0,n

over M0,n (see Sects. 2.2 and 3.1), we conclude that S = S − π logH determines a 

function on M0,n. The combination ωWP−
4π2

3 ωTZ, with the overall factor 1/12π, appears 
in the local index theorem for families on punctured Riemann surfaces for k = 0, 1 (see 
[13, Theorem 1]). Equation (4.1) agrees with the fact that the analog of the Hodge line 
bundle λ1 over M0,n is trivial. The function S plays the role of the Quillen metric in λ1, 
defined in [13].

4.2. Chern forms and potential on Sg,n

As in Sect. 2.3, let X = Σ\Ω be a compact Riemann surface of genus g with n
marked points x1, . . . , xn, let Γ be a Fuchsian group of type (g, n) such that X0 =
X \ {x1, . . . , xn} ∼= Γ\H, and let J : H∗ → Ω be the corresponding branched covering 
map. Similar to the previous section, denote by R the projection of the automorphic form 
S(J−1) of weight 4 for Σ to the subspace H 2,0(Ω0, Σ) ∼= T ∗

0 Sg,n. Using pairing (2.27), 
we get

R(w) =
3g−3+n∑

j=1
βjPj(w), where βj = (S(J−1),Mj).

Corresponding automorphic forms over each point (Σμ, wμ
1 , . . . , w

μ
n) determine a 

(1, 0)-form R on Sg,n.
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Using (2.28) we have

R(w) = πR0(w) +
n∑

i=1
Ri(w),

where

R0(w) = −
3g−3+n∑

j=1
cjPj(w), Ri(w) =

3g−3+n∑
j=1

(Ei,Mj)Pj(w).

In the next theorem, using identification of cotangent spaces to Sg,n at each point 
(Σμ, wμ

1 , . . . , w
μ
n) with H 2,0(Ωμ

0 , Σμ) (see Sect. 2.3), we explicitly describe canonical con-
nections on the Hermitian line bundles Li and L .

Theorem 1. Let ∂ and ∂̄ be (1, 0) and (0, 1) components of de Rham differential on Sg,n. 
The following statement holds.

(i) In a local holomorphic frame canonical connection on the Hermitian line bundle 
(Li, hi) is given by

h−1
i ∂hi = − 2

π
Ri, i = 1, . . . , n.

(ii) In a local holomorphic frame canonical connection on the Hermitian line bundle 
(L , exp{S/π}) is given by

1
π
∂S = 2R0.

(iii) The function S : Sg,n → R given by (3.7) satisfies

∂S = 2R.

Proof. To prove part (i), it is sufficient to show that

(
∂ log hεμi

j

∂ε

)∣∣∣∣∣
ε=0

= − 2
π

(Ej ,Mi).

Repeating verbatim computation in the proof of Lemma 4 we get

(
∂ log hεμi

j

∂ε

)∣∣∣∣∣ = Ḟ i
w(wj).
ε=0
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Now using (2.14) and (2.29) we obtain

πḞ i
w(wj) = −

∫∫
C

Mi(w)
(

1
(w − wj)2

− 1
w(w − 1)

)
d2w = −2(Ej ,Mi),

and the result follows.
To prove part (ii), it is sufficient to show that

∂

∂ε

∣∣∣∣
ε=0

S(Σεμi ;wεμi

1 , . . . , wεμi
n ) = −2πci, i = 1, . . . , 3g − 3 + n.

We have

I = ∂

∂ε

∣∣∣∣
ε=0

S(Σεμi ;wεμi

1 , . . . , wεμi
n ) =

√
−1
2 lim

δ→0

∂

∂ε

∣∣∣∣
ε=0

Iδ(ε)

and

Iδ(ε) =
∫∫
D

εμi
δ

ω(ϕεμi) +
g∑

k=2

∫
C

εμi
k

θ(Lεμi
k )−1(ϕεμi).

The calculation of I almost verbatim repeats the corresponding computation in the 
proof of Theorem 1 in [20], where regularization at the punctures is treated as in the 
proof of Theorem 1 in [19]. Namely, using commutative diagram (2.25) and the change 
of variables w �→ F εμi(w), we get

Iδ(ε) =
∫∫

Dδ(ε)

(F εμi)∗(ω(ϕεμi)) +
g∑

k=2

∫
Ck

(F εμi)∗(θ(Lεμi
k )−1(ϕεμi)),

where

Dδ(ε) = D \ ∪n
j=1 {w ∈ D | |F εμi(w) − F εμi(wj)| < δ} .

To compute ∂Iδ(ε)/∂ε|ε=0, we need to differentiate under the integral sign as well as 
over the variable integration domain Dδ(ε). The first computation repeats verbatim the 
one in [20, Theorem 1], with the only change that now integration goes over Dδ and ∂Dδ

instead of D and ∂D as in [20]. For the second contribution we use an elementary formula 
for differentiating a given 2-form Ω over a smooth family of variable domains D(ε),

∂

∂ε

∣∣∣∣
ε=0

∫∫
D(ε)

Ω =
∫
∂D

iV (Ω),

where V is a vector field along ∂D corresponding to the family of curves ∂D(ε). In our 
case we readily obtain
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∂

∂ε

∣∣∣∣
ε=0

∫∫
Dδ(ε)

ω = −
n∑

j=1

∫
∂Dj(δ)

|ϕw|2
(
Ḟ i(w) − Ḟ i(wj)

)
dw̄,

where ∂Dj(δ) are oriented as a boundary of Dj(δ) (which is opposite to the orientation 
from ∂Dδ).

Thus as in [20] we get

∂Iδ(ε)
∂ε

∣∣∣∣
ε=0

= 2
∫∫
Dδ

S(J−1)(w)Mi(w)dw ∧ dw̄

−
n∑

j=1

∫
∂Dj(δ)

|ϕw|2
(
Ḟ i(w) − Ḟ i(wj)

)
dw̄ + I1 + I2 + I3,

where

I1 = −2
n∑

j=1

∫
∂Dj(δ)

ϕwḞ
i
w̄dw̄, I2 = −

n∑
j=1

∫
∂Dj(δ)

ϕwḞ
i
wdw,

I3 = −
n∑

j=1

∫
∂Dj(δ)

ϕw̄Ḟ
i
wdw̄.

As in the proof of Theorem 1 in [19], we obtain that I1, I2 and I3 are o(1) as δ → 0. 
Also,

lim
δ→0

∫∫
Dδ

S(J−1)(w)Mi(w)dw ∧ dw̄ = −2
√
−1(S(J−1),Mi) = −2

√
−1βi,

and it follows from asymptotic behavior (2.9) that

lim
δ→0

n∑
j=1

∫
∂Dj(δ)

|ϕw|2(Ḟ i(w) − Ḟ i(wj))dw̄

= lim
δ→0

n∑
j=1

∫
∂Dj(δ)

(
Ḟ i(w) − Ḟ i(wj)

|w − wj |2
+ 2(Ḟ i(w) − Ḟ i(wi))

|w − wj |2 log |w − wj |

)
dw̄

= 2π
√
−1

n∑
j=1

Ḟ i
w(wj).

Thus we have

I = 2βi + π

n∑
j=1

Ḟ i
w(wj) = −2πci.

Part (iii) immediately follows from (i) and (ii). �
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Remark 10. One can also restate the proof using cohomological methods developed 
in [14].

Theorem 2. The following statements hold.

(i) The first Chern form of the Hermitian line bundle (Li, hi) is given by

c1(Li, hi) = 4
3ωTZ,i, i = 1, . . . , n.

(ii) The first Chern form of the Hermitian line bundle (L , exp{S/π}) is given by

c1(L , exp{S/π}) = 1
π2ωWP.

(iii) The function S given by (3.7) satisfies

∂̄∂S = −2
√
−1
(
ωWP − 4π2

3 ωTZ

)
,

i.e., −S is a potential for this special combination of WP and TZ metrics.

Proof. Since

c1(Li, hi) =
√
−1
2π ∂̄∂ log hi,

the proof of part (i) is exactly the same as that of Proposition 1. Using part (ii) of 
Theorem 1, we obtain the proof of part (ii) by repeating, line by line, the computation 
in [20, Theorem 2]. Part (iii) immediately follows from (i) and (ii). �
Remark 11. As in case of the moduli space M0,n (see Remark 9), the combination ωWP−
4π2

3 ωTZ, with the overall factor 1/12π, appears in the local index theorem for families on 

punctured Riemann surfaces for k = 0, 1 (see [13, Theorem 1]). Part (iii) of Theorem 2
agrees with the fact that the Hodge line bundle λ1 is holomorphically trivial over Sg,n. 
It would be interesting to relate the function S with the Quillen metric in λ1, defined 
in [13] (see [21, §3]).

Remark 12. Let Mg,n be the moduli space of n-pointed algebraic curves of genus g. The 
Hermitian metrics hi in the line bundles Li provide explicit expressions for the pullbacks 
of the Hermitian metrics in tautological line bundles over Mg,n, introduced in [16,18].

5. Generalization to quasi-Fuchsian deformation spaces

Here we define the Liouville action functional on the quasi-Fuchsian deformation 
spaces of punctured Riemann surfaces and prove that it is a Kähler potential for the 
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Weil–Petersson metric. The construction follows very closely our work [14] for compact 
Riemann surfaces, so here we just highlight the necessary modifications and refer to [14]
for the details. For the convenience of the reader here we are using the same notations 
as in [14].

Let Γ be a marked, normalized, quasi-Fuchsian group of type (g, n) such that 3g−3 +
n > 0. Its region of discontinuity Ω has two invariant components Ω1 and Ω2 separated 
by a quasi-circle C. There exists a quasiconformal homeomorphism J1 of Ĉ such that

QF1 J1 is holomorphic on U and J1(U) = Ω1, J1(L) = Ω2, J1(R) = C, where U and L
are, respectively, upper and lower half-planes.

QF2 J1 fixes 0, 1 and ∞.
QF3 Γ1 = J−1

1 ◦ Γ ◦ J1 is a marked, normalized Fuchsian group.

Let X 
 Γ\Ω1 and Y 
 Γ\Ω2 be corresponding marked punctured Riemann surface 
of type (g, n) with opposite orientations. There is also a quasiconformal homeomorphism 
J2 of Ĉ, holomorphic on L with a Fuchsian group Γ2 = J−1

2 ◦ Γ ◦ J2 so that X 
 Γ1\U
and Y 
 Γ2\L. The hyperbolic metric eφhyp(w)|dw|2 on Ω = Ω1 � Ω2 is explicitly given 
by

eφhyp(w) = |(J−1
i )w(w)|2

| Im(J−1
i (w))|2

if w ∈ Ωi, i = 1, 2, (5.1)

and is a pull-back by the map J−1 : Ω1 �Ω2 → U �L of the hyperbolic metric on U �L, 
where J |U = J1|U and J |L = J2|L.

Denote by D(Γ) the deformation space of the quasi-Fuchsian group Γ. It is a complex 
manifold of complex dimension 6g−6 +2n with the Weil–Petersson Kähler form (see [14, 
Sect. 3] and references therein). As in [14], we define the smooth function S : D(Γ) → R, 
the critical value of the Liouville action functional, using homology and cohomology 
double complexes associated with the Γ-action on Ω.

5.1. Homology construction

Start with marked normalized Fuchsian group Γ of type (g, n) with 2g hyperbolic 
generators α1, . . . , αg, β1, . . . , βg and n parabolic generators λ1, . . . , λn satisfying the 
single relation

γ1 · · · γgλ1 · · ·λn = id,

where γk = [αk, βk] = αkβkα
−1
k β−1

k . Here the attracting and repelling fixed points of α1
are, respectively, 0 and ∞, and the attracting fixed point of β1 is 1.

The double homology complex K•,• is defined as S•⊗ZΓ B•, a tensor product over the 
integral group ring ZΓ, where S• = S•(U) is the singular chain complex of U with the 
differential ∂′, considered as a right ZΓ-module, and B• = B•(ZΓ) is the standard bar 
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resolution complex for Γ with the differential ∂′′. The associated total complex Tot K is 
equipped with the total differential ∂ = ∂′ + (−1)p∂′′ on Kp,q.

The analog of the total 2-cycle that represents the fundamental class of the compact 
Riemann surface in [14, Sect. 2.2.1] is the following 2-chain

Σ = F + L− V,

satisfying

∂Σ = −
n∑

i=1
zi ⊗ [λi], (5.2)

where zi ∈ R are fixed points of the parabolic generators λi.

Remark 13. Note that Σ − Σ̄, where Σ̄ = F̄ + L̄ − V̄ , is a total 2-cycle in the double 
complex associated with U � L,

∂(Σ − Σ̄) = 0.

Here the elements F 
 F ⊗ [ ] ∈ K2,0, L ∈ K1,1 and V ∈ K0,2 are defined as follows. 
The element F is a standard fundamental domain for Γ in U — a closed non-Euclidean 
polygon with 4g+2n edges labeled by ak, a′k, b′k, bk, k = 1, . . . , g, and ci, c′i, i = 1, . . . , n, 
satisfying αk(a′k) = ak, βk(b′k) = bk and λi(c′i) = ci. The orientation of the edges is such 
that

∂′F =
g∑

k=1

(ak + b′k − a′k − bk) +
n∑

i=1
(ci − c′i).

Set ∂′ak = ak(1) −ak(0), ∂′bk = bk(1) −bk(0), ∂′ci = ci(1) −ci(0), so that ak(0) = bk−1(0), 
k = 2, . . . , g, a1(0) = c′n(0), ci(0) = c′i−1(0), i = 2, . . . , n, c1(0) = bg(0). The elements 
L ∈ K1,1 and V ∈ K0,2 are given by

L =
g∑

k=1

(bk ⊗ [βk] − ak ⊗ [αk]) −
n∑

i=1
ci ⊗ [λi] (5.3)

and

V =
g∑

k=1

(
ak(0) ⊗ [αk|βk] − bk(0) ⊗ [βk|αk] + bk(0) ⊗

[
γ−1
k |αkβk

])

−
g−1∑

bg(0) ⊗
[
γ−1
g . . . γ−1

k+1|γ−1
k

]
+

n−1∑
c1(0) ⊗ [λ1 · · ·λi|λi+1] .

(5.4)
k=1 i=1
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Finally let Pk be Γ-contracting paths in U connecting 0 to bk(0) (see [14, Definition 2.3]), 
and let

W =
g∑

k=1

(
Pk−1 ⊗ [αk|βk] − Pk ⊗ [βk|αk] + Pk ⊗

[
γ−1
k |αkβk

])

−
g−1∑
k=1

Pg ⊗
[
γ−1
g · · · γ−1

k+1|γ−1
k

]
+

n−1∑
i=1

Pg ⊗ [λ1 · · ·λi|λi+1] .

Now let Γ be a marked, normalized, quasi-Fuchsian group of type (g, n) with the 2g
loxodromic generators α1, . . . , αg, β1, . . . , βg and n parabolic generators λ1, . . . , λn, and 
let Γ1 be the Fuchsian group such that Γ1 = J−1

1 ◦Γ ◦J1. The double complex associated 
with Ω = Ω1 � Ω2 and the group Γ is a push-forward by the map J1 of the double 
complex associated with U � L and the group Γ1. The corresponding total 2-cycle for 
this complex is given by

Σ1 − Σ2 = J1(Σ) − J1(Σ̄) = F1 − F2 + L1 − L2 − V1 + V2,

where F1 = J1(F ), F2 = J1(F̄ ), L1 = J1(L), L2 = J1(L̄), V1 = J1(V ), V2 = J1(V̄ ), and 
we continue to denote by Σ − Σ̄ the total 2-cycle for the double complex associated with 
U � L and the group Γ1.

5.2. Cohomology construction

The corresponding double complex in cohomology C•,• is defined as Cp,q =
HomC(Bq, Ap), where A• is the complexified de Rham complex on Ω = Ω1 � Ω2. The 
associated total complex TotC is equipped with the total differential D = d + (−1)pδ
on Cp,q, where d is the de Rham differential and δ is the group coboundary. The natural 
pairing 〈 , 〉 between Cp,q and Kp,q is given by the integration over chains (see [14] for 
details).

Put ϕ = φhyp. As in [14], starting from the 2-form

ω[ϕ] =
(
|ϕw|2 + eϕ

)
dw ∧ dw̄ ∈ C2,0

(cf. the corresponding 2-form in Sect. 3.2), one constructs the total 2-cocycle Ψ[ϕ] and 
defines the Liouville action as

SΓ = i

2 〈Ψ[ϕ],Σ1 − Σ2〉,

provided that integrals over F1 and F2 exist (as we will show below). Moreover, SΓ does 
not depend on the choice of the fundamental domains F1 and F2 for Γ in Ω1 and Ω2. 
Simplifying as in [14, Sect. 2.3.3], we finally obtain
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SΓ = i

2

(
〈ω[ϕ], F1 − F2〉 − 〈θ̌[ϕ], L1 − L2〉 + 〈ǔ,W1 −W2〉

)
, (5.5)

(cf. [14, formula (2.27)]). Here W1 = J1(W ), W2 = J1(W̄ ), and

θ̌γ−1 [ϕ] =
(
ϕ− 1

2 log |γ′|2 − 2 log 2 − log |c(γ)|2
)(

γ′′

γ′ dw − γ′′

γ′ dw̄

)
(5.6)

(cf. the corresponding 1-form in Sect. 3.2) and

ǔγ−1
1 ,γ−1

2
= −

(
1
2 log |γ′

1|2 + log |c(γ2)|2
|c(γ2γ1)|2

)(
γ′′
2
γ′
2
◦ γ1 γ

′
1 dw − γ′′

2

γ′
2
◦ γ1 γ′

1 dw̄

)

+
(

1
2 log |γ′

2 ◦ γ1|2 + log |c(γ2γ1)|2
|c(γ1)|2

)(
γ′′
1
γ′
1
dw − γ′′

1

γ′
1
dw̄

)
.

Denote by z1i, z2i ∈ R, i = 1, . . . , n, the fixed points of the parabolic generators of Γ1
and Γ2, and by wi = J1(z1i) = J2(z2i) ∈ C — the fixed points of the parabolic generators 
λi of Γ. Let σ1i, σ2i ∈ PSL(2, R) be such that σ1i∞ = z1i and σ2i∞ = z2i, i = 1, . . . , n.

Lemma 5. Let eϕ(w)|dw|2 be the hyperbolic metric on Ω = Ω1 � Ω2. Then

(ϕ ◦ J1 ◦ σ1i)(z) = 2 log y + O(1) as y = Im z → ∞,

(ϕ ◦ J2 ◦ σ2i)(z) = 2 log |y| + O(1) as y = Im z → −∞.

Proof. It is sufficient to prove the first formula. By definition,

(ϕ ◦ J1)(z) + log |J ′
1(z)|2 = −2 log y.

Let σi ∈ PSL(2, C) be such that σi(∞) = wi. The map J̃1 = σ−1
i ◦ J1 ◦ σ1i is univalent 

and preserves ∞, so that in the neighborhood of ∞

J̃1(z) = a1z + a0 + a−1z
−1 + a−2z

−2 + . . . , where a1 �= 0.

Whence

(J1 ◦ σ1i)(z) = wi + b−1z
−1 + b−2z

−2 + b−3z
−3 + . . . , where b−1 �= 0.

Thus as y → ∞ we obtain

(ϕ ◦ J1)(σ1iz) = − log |J ′
1(σ1iz)|2 − log Im(σ1iz)2

= − log |(J1 ◦ σ1i)′(z)|2 − log y2

= 4 log y − 2 log y + O(1). �
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Corollary 4. The integrals in definition (5.5) of SΓ are convergent.

Proof. Since SΓ does not depend on the choices of fundamental domains for Γ in Ω1 and 
Ω2, we can choose F1 to be the push-forward by J1 of a fundamental domain for Γ1 in U
and F2 — the push-forward by J2 of a fundamental domain for Γ2 in L. It immediately 
follows from Lemma 5 that the pullback J∗

1 (ω[ϕ]) is integrable over the fundamental 
domain for Γ1 in U, and J∗

2 (ω[ϕ]) — over the fundamental domain for Γ2 in L. The line 
integrals in the definition of SΓ converge as well. �

Using formula (5.5), we define a function S : D(Γ) → R by setting S(Γ′) = SΓ′ for 
every Γ′ ∈ D(Γ).

5.3. Potential for the WP metric on D(Γ)

Let

ϑ(z) = 2ϕzz − ϕ2
z =

{
2S
(
J−1

1
)
(z), if z ∈ Ω1

2S
(
J−1

2
)
(z), if z ∈ Ω2.

It follows from Lemma 5 that an automorphic form ϑ of weight 4 for Γ vanishes at 
the cusps w1, . . . , wn. As in [14, Sect. 4], the family of automorphic forms ϑ for every 
Γ′ ∈ D(Γ) determines a (1, 0)-form ϑ on D(Γ). Denote by d = ∂ + ∂̄ the decomposition 
of de Rham differential on D(Γ) into (1, 0) and (0, 1) components.

The following result is an exact analog of Theorem 4.1 in [14].

Theorem 3. On D(Γ),

∂S = ϑ.

The proof repeats that of Theorem 4.1 in [14]. The only modification is a δ-truncation 
of fundamental domains F1 and F2 near the cusps w1, . . . , wn, needed for the application 
of Stokes’ theorem. Lemma 5 shows that in the limit δ → 0 the corresponding boundary 
terms vanish.

The next result is exact analog of Theorem 4.2 in [14].

Theorem 4. The following formula holds on D(Γ),

dϑ = ∂̄∂S = −2iωWP,

so that −S is a Kähler potential of the WP metric on D(Γ).

The proof repeats that of Theorem 2 and uses Lemma 5. We leave details to the 
interested reader.
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6. Holography and renormalized volume

6.1. Renormalized volume of Schottky 3-manifolds

Here we prove the holography principle, a precise relation between the renormalized 
hyperbolic volume of the corresponding Schottky 3-manifold and the function S =
S − π logH, where S is the regularized Liouville action and H is the Hermitian metric 
in the line bundle L over Sg,n (see Sects. 3.2 and 4.2). In case of the classical Liouville 
action on Sg, this relation was proved in [7] for classical Schottky groups and in [14, 
Remark 6.2] for the general case.

As in Sect. 2.3, let Σ ⊂ PSL(2, C) be marked normalized Schottky group with the 
region of discontinuity Ω ⊂ Ĉ, and let M = Σ\U3 be the corresponding hyperbolic 
3-manifold with the conformal boundary at infinity X = Σ\Ω. Here U3 = {(z, t) : z ∈
C, t > 0} is the Lobachevsky (hyperbolic) space.

As in [14, Sect. 5], let K•,• = S• ⊗ZΣ B• be the corresponding double homology 
complex, where S• = S•(U3) is the singular chain complex of U3 with the differential ∂′

and B• = B•(ZΣ) is the standard bar resolution complex for Σ with the differential ∂′′.
Let R ⊂ U

3 be the fundamental region for the marked Schottky group Σ in U3, 
identified with R⊗ [ ] ∈ K3,0. We have ∂′′R = 0 and

∂′R = −D +
g∑

i=1
(Hi − Li(Hi)) = −D + ∂′′S (6.1)

where D is the fundamental domain for Σ in Ω as in Sect. 2.3, Hi is a topological 
hemisphere6 with the boundary Ci, and S ∈ K2,1 is defined by

S = −
g∑

i=1
Hi ⊗ L−1

i .

Putting L =
∑g

i=1 Ci ⊗ L−1
i ∈ K1,1, we have ∂′S = −L and

∂ (R− S) = ∂′R− ∂′S − ∂′′S

= −D + ∂′′S + L− ∂′′S = −D + L.
(6.2)

Let eϕ(w)|dw|2 be the hyperbolic metric on Ω0 = Ω \ Σ · {w1, . . . , wn} (see Sect. 2.3). 
As in [14, Lemma 5.1], there is a Σ automorphic function f ∈ C∞(U3 ∪ Ω0) which is 
positive on U3 and uniformly on a compact subsets of Ω0 satisfies

f(Z) = teϕ(z)/2 + O(t3) as t → 0,

6 It is a Euclidean hemisphere when Σ is a classical Schottky group.
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where Z = (z, t). However near (wi, 0), as it follows from (2.9), the function f satisfies

f(Z) = teϕ(z)/2 + O(t3|z − wi|−2) as t → 0, (6.3)

so that the level surface f = ε meets (wi, 0) and is non-compact. Hence in order to use f
as a level defining function for the truncated fundamental region R ∩ {f ≥ ε}, one also 
needs to remove a neighborhoods in U3 of the points (w1, 0), . . . , (wn, 0). Define

Rε = R ∩ {f ≥ ε} \
n⋃

i=1

{
(z, t) ∈ U

3 | ‖(z, t) − (wi, 0)‖ ≤ ε|ai(1)|
}
,

where ‖ ‖ is the Euclidean distance in U
3 (cf. the definition of S(Σ; w1, . . . , wn) in 

Remark 6). As in (6.1),

∂′Rε = −Dε +
g∑

i=1
(Hi,ε − Li(Hi,ε)) , (6.4)

where Dε is the complement in a level surface f(Z) = ε of its intersection with the set 
∪n
i=1{‖Z − (wi, 0)‖ ≤ ε|ai(1)|}, and Hi,ε = Rε ∩Hi.
Following [14], we define the regularized volume of the Schottky 3-manifold M (the 

regularized on-shell Einstein–Hilbert action) by

Vreg(M) = lim
ε→0

(
Vε −

1
2Aε −

1
2πn (log ε + 2 log | log ε|) − π χ(X) log ε

)
,

where Vε is the hyperbolic volume of Rε and

Aε =
∫∫
Dε

dA,

where dA is the area form on Dε induced by the hyperbolic metric on U3. Note that the 
only difference with the [14, Def. 5.1] is the extra subtraction of 12πn (log ε + 2 log | log ε|), 
which is due the fact that f(Z) blows up as Z → (wi, 0).

Repeating almost verbatim computations in [14, Sect. 5.2] and using (6.3), we arrive 
at the following statement.

Theorem 5. Let eϕ(w)|dw|2 be hyperbolic metric on Ω \Σ · {w1, . . . , wn}. The regularized 
hyperbolic volume Vreg(M) of the Schottky 3-manifold M = Σ\U3 is well-defined and

Vreg(M) = −1
4S + π(g − 1),

where S is given by (3.7).
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Remark 14. Equivalently, the regularized volume Vreg(M) is −1/4 times the function 
Š = Š − π logH, where Š is the Liouville action without the area term.

6.2. Renormalized volume of quasi-Fuchsian 3-manifolds

Here we define the renormalized hyperbolic volume of quasi-Fuchsian 3-manifolds and 
establish its relation with the classical Liouville action in Sect. 5. For the renormal-
ized hyperbolic volume, another approach to the case of geometrically finite hyperbolic 
3-manifolds was developed in [4].

6.2.1. Rank one cusps
Let Γ be marked, normalized, quasi-Fuchsian group of type (g, n) and let λ1, . . . , λn be 

its parabolic generators with fixed points v1, . . . , vn ∈ C (see Sect. 5). Since the stabilizer 
of a parabolic fixed point vk in Γ is a cyclic subgroup 〈λk〉, it is a rank one cusp. Denote 
by M = Γ\U3 the corresponding quasi-Fuchsian 3-manifold and let X � Y = Γ\Ω1 �Ω2
be its conformal boundary at infinity.

If λ(z) = z+1, there exists a s0 > 0 such that the image of the projection π : U3 → M

of an open horoball

Hs = {(z, t) ∈ U
3 | t > s}

is embedded into M for s ≥ s0. In this case, π(Hs) ⊂ M is homeomorphic to {0 < |z| <
1} ×R and π({(z, t) ∈ U

3 | t = s}) corresponds to {|z| = 1} ×R. The set π(Hs) is called 
a solid cusp tube.

In general, if a rank one cusp v = ∞ is associated to the parabolic subgroup generated 

by λ =
(

1 q
0 1

)
, we have

σ−1λσ =
(

1 1
0 1

)
where σ =

(
q

1
2 0
0 q−

1
2

)
, (6.5)

and σ maps an open horoball Hs onto H|q|s. In this case, the corresponding solid cusp 
tube is π(H|q|s). When a rank one cusp vi is finite and is associated with the parabolic 
subgroup generated by

λi =
(

1 + qivi −qiv
2
i

qi 1 − qivi

)
,

we have

σ−1
i λiσi =

(
1 −1
0 1

)
where σi =

(
q

1
2
i vi −q

− 1
2

i

q
1
2
i 0

)
. (6.6)

It is easy to see that σi(Hs) is an open horoball tangent to C at σi(∞) = vi, which 
is an Euclidean ball with radius of (2|qi|s)−1, and the corresponding solid cusp tube is 
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π(σi(Hs)). In our case the normalization of Γ is such that all cusps are finite and the 
solid cusp tubes corresponding to vi can be chosen to be mutually disjoint in M . We 
denote Hi,ε = σi(H1/ε2), i = 1, . . . , n.

6.2.2. Truncation of a fundamental region
Let R ⊂ U

3 be a fundamental region for Γ in U3. Put Hε0 = ∪n
i=1(Hi,ε0 \Pi,ε0), where 

Pi,ε = σi(Pε) and

Pε := {(z, t) ∈ U
3 | z = x + iy, |y| > ε−1}.

The proof of Γ-automorphic partition of unity in [6, Lemma V.3.1] can be easily adapted 
to the case of Kleinian groups with parabolic elements. As in [14, Lemma 5.1], we 
conclude that there exist ε0 > 0 and a Γ-automorphic function f ∈ C∞(U3

0), where 
U

3
0 = ∪γ∈Γγ(R \ Hε0), satisfying

f(Z) = teϕ(z)/2 + O(t3) as t → 0, (6.7)

uniformly on compact subsets of U3
0. Here eϕ(z)|dz|2 is the hyperbolic metric on Ω1 �Ω2

(see Sect. 5).
Using the level defining function f we truncate a non-compact fundamental region R

as follows:

Rε = R \
(
{Z ∈ R \ Hε0 : f(Z) ≤ ε} ∪

n⋃
k=1

Hk,ε

)
.

Similar to the Schottky case, we define a renormalized hyperbolic volume of the quasi-
Fuchsian 3-manifold M by

Vreg(M) = lim
ε→0

(
Vε −

1
2Aε − π χ(X � Y ) log ε

)
,

where Vε is the hyperbolic volume of Rε and Aε is the area of the surface −Fε =
∂′Rε ∩ {f = ε} in the induced metric. Repeating computation in [14] and analyzing the 
extra terms due to the removal of a solid cusp tubes from M , on can show that their 
contribution vanishes as ε → 0. Thus we arrive at the following statement.

Theorem 6. Let eϕ(z)|dz|2 be the hyperbolic metric on Ω1 � Ω2. The regularized hyperbolic 
volume Vreg(M) of the quasi-Fuchsian 3-manifold M = Γ\U3 is well-defined and

Vreg(M) = −1
4 ŠΓ,

where ŠΓ is the Liouville action (5.5) without the area term,

ŠΓ = SΓ −
∫∫

eϕd2z + 4πχ(X � Y ) log 2.

F
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Note that in this case the statement of the theorem is exactly the same as in the 
compact case [14, Theorem 5.1]. We leave details to the interested reader.
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